

HCL-003-001501

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

October - 2017

Physics: P - 501

(Mathematical Phy., Classical Mechanics & Quantum Mech.) (New Course)

> Faculty Code: 003 Subject Code: 001501

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions:

- (1) Attempt all the questions.
- (2) Figures on right side indicate marks.
- (3) Notations have their usual meanings.
- 1 All questions are compulsory:

20

- (1) If $a_0 = 1/2$, $a_n = (-1)^n \pi$ and $b_n = 0$, then what will be the fourier series?
- (2) Write the value of fourier co-efficient b_n .
- (3) In what interval the function $\frac{x}{1-x}$ does not satisfy the Dirichlet conditions?
- (4) Configuration space is a _____ dimensional space.
- (5) Lagrange's undetermined multiplier is denoted by _____.
- (6) What is the equation of generalized velocity?
- (7) If the kinetic energy and potential energy of the system are $150~\mathrm{J}$ and $-25~\mathrm{J}$ respectively, find the value of Lagrangian of the system.

(8)
$$\frac{\partial L}{\partial q_i} = \underline{\qquad} and \frac{\partial L}{\partial \ddot{q}_i} = \underline{\qquad}$$

(9) The equation of simple pendulum is _____.

- (10) The force constant $K = \underline{\hspace{1cm}}$.
- (11) In $E\Psi = H\Psi$, where Hamiltonian operator H is equal to _____.
- (12) For conservation of probability, the value of $\frac{\partial}{\partial t} \int |\Psi|^2 d^3x = \underline{\qquad}.$
- (13) In $|\psi|^2 = \psi \psi^*$, where ψ^* is called _____ of Ψ
- (14) According to Ehrenfest's theorem expectation value of momentum is _____.
- (15) The relation between energy and momentum is _____.
- (16) Expectation value of potential energy <v> = _____.
- (17) If the particle is stay in the potential well (is bounded by the potential) its total energy is _____.
- (18) The N^2 is called the _____ of the Wave-Function.
- (19) $[Z, P_z] =$ _____
- $(20) (AB)^{+} = ____$
- 2 (a) Answer any three of the following questions: 6
 - (1) Obtain the cosine series.
 - (2) Explain the meaning of Scleronomous and rheonomous constraints with illustrations of each.
 - (3) Discuss cyclic coordinates.
 - (4) Obtain the equation of generalized momentum from Lagrange's equation of motion.
 - (5) Explain Hamilton's principle.
 - (6) What is the phase space?
 - (b) Answer any three of the following questions: 9
 - (1) Obtain the Fourier series of the function

$$f(x) = \begin{cases} 0, & -\pi \le x \le 0 \\ 1, & 0 \le x \le \pi \end{cases}$$

- (2) Describe the extension of interval.
- (3) Obtain the equation of charge for LC series circuit.
- (4) Explain Rayleigh's dissipation function.
- (5) Explain Lagrange's undetermined multiplier.
- (6) Explain the configuration space.
- (c) Answer any two of the following questions: 10
 - (1) Define the Fourier series. Evaluate the coefficients.
 - (2) Obtain the Lagrange's equation of motion.
 - (3) Obtain the equation for Atwood's machine from Lagrange's equation.
 - (4) Explain the two applications of Fourier series in detail.
 - (5) Obtain the equation of simple pendulum and compound pendulum from Hamilton's equation.
- 3 (a) Answer the following questions in short: (any three) 6
 - (1) Obtain the Schrodinger's equation for free particle in three dimensions.
 - (2) Explain the stationary state.
 - (3) Explain: Eigen function and Eigen value.
 - (4) Define: Adjoint operator and self-adjoint operator.
 - (5) Show that : $[X, P_x] = i\hbar$
 - (6) Show that : $(A^+)^+ = A$
 - (b) Answer the following questions: (any three) 9
 - (1) Explain the normalization of wave function.
 - (2) Obtain the time independent Schrodinger's equation.
 - (3) Write short note on expectation value.
 - (4) Prove that:
 - (i) $(A+B)^+ = A^+ + B^+$
 - (ii) $(CA)^+ = C^* A^+$

- (5) Show that $[L_x, L_y] = i\hbar L_z$
- (6) Show that the eigen value of self adjoint operator is real.
- (c) Answer the following questions in detail: (any two) 10
 - (1) Obtain the Schrodinger equation for a free particle in one dimension.
 - (2) Obtain the Ehrenfest's theorem.
 - (3) Obtain the solution of a particle in a square well potential when energy E < O.
 - (4) Explain Dirac delta function in detail.
 - (5) Describe the fundamental postulates of wave mechanics.

[1200/23-51]